Lingua

  • Italiano
  • English
Dipartimento di Fisica - Politecnico di Milano

Submission - View

Title: Entanglement entropy and macroscopic quantum states with dipolar bosons in a triple-well potential
Submitting author: Giovanni Mazzarella
Affiliation address: Dipartimento di Fisica e Astronomia ”Galileo Galilei” and CNISM, Università degli Studi Padova, Via Marzolo 8, 35122 Padova, I
Address: Dipartimento di Fisica e Astronomia ”Galileo Galilei”, Via F. Marzolo 8, 35122 Padova, Italy
Country: Italy
Reference field: 01 – Atoms and Molecules
Oral presentation/Poster (Author's request): Oral presentation
Other authors and affiliations: Luca Dell' Anna: Dipartimento di Fisica e Astronomia ”Galileo Galilei” and CNISM, Università degli Studi di Padova, Via Marzolo 8, 35122 Padova, Italy Vittorio Penna: Dipartimento di Scienza Applicata e Tecnologia and u.d.r. CNISM, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy Luca Salasnich: Dipartimento di Fisica e Astronomia ”Galileo Galilei” and CNISM, Università degli Studi di Padova, Via Marzolo 8, 35122 Padova, Italy
Abstract
Entanglement entropy and macroscopic quantum states with dipolar bosons in a triple-well potential:

We study interacting dipolar (atomic) bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site interaction. This analysis is performed both numerically and analytically by using suitable coherent-state representations of the ground state. The latter exhibits a variety of forms ranging from the su(3) coherent state in the delocalization regimes to a macroscopic cat-like state with fully localized populations, passing for a coexistence regime where the ground state displays a mixed character. We characterize the quantum correlations of the ground state from the bi-partition perspective. We calculate both numerically and analytically (within the previous coherent-state representation) the single-site entanglement entropy which, among various interesting properties, exhibits a maximum value in correspondence to the transition from the cat-like to the coexistence regime. In the latter case, we show that the ground-state mixed form corresponds, semiclassically, to an energy exhibiting two almost-degenerate minima.