Inizio

29/08/2019

Fine

28/08/2023

Status

Completato

PRIN 2017 - QUSHIP

Inizio

29/08/2019

Fine

28/08/2023

Status

Completato

PRIN 2017 - QUSHIP

TAMING COMPLEXITY WITH QUANTUM STRATEGIES: A HYBRID INTEGRATED PHOTONICS APPROACH


Quantum technologies will impact on both scientific research and daily aspects of modern society. Relevant applications include the simulation of complex quantum systems and quantum chemistry, material engineering, nano-technologies, and internet commerce and security.


By exploiting a hybrid-integrated photonic platform, the Project aims at providing experimental breakthroughs in this research area, considering both 'hardware' and 'software' contributions. In particular, three key objectives are pursued:

- Exploit machine learning to gain new insights in quantum physics.

- Demonstrate that integrated photonics can be fruitfully adopted to implement quantum machine learning.

- Head towards a certified quantum advantage over the best possible strategies on classical computational and simulation devices, for a set of nontrivial tasks in information processing.


The Principal Investigator is Prof. Fabio Sciarrino, at the Sapienza University of Rome. Politecnico di Milano is a partner in this project, offering key expertise in femtosecond laser micromachining to design and fabricate innovative photonic devices based on integrated waveguide circuits. Other Institutions, partners in this project, are University of Salerno, Scuola Normale Superiore di Pisa, University of Bari and University of Palermo.

Pubblicazioni

  1. C. Pentangelo, S. Atzeni, F. Ceccarelli, R. Osellame, and A. Crespi Analytical modeling of the static and dynamic response of thermally actuated optical waveguide circuits” Phys. Rev. Res. 3, 023094 (2021).
  2. C. Benedetti, D. Tamascelli, M. G. A. Paris, and A. Crespi, Quantum spatial search in three-dimensional waveguide arrays, Phys. Rev. Appl. 16, 054036 (2021).
  3. G. Corrielli, A. Crespi, and R. Osellame, Femtosecond laser micromachining for integrated quantum photonics, Nanophotonics 10, 3789 (2021).
  4. C. Pentangelo, F. Ceccarelli, S. Piacentini, S. Atzeni, A. Crespi, and R. Osellame, Low-power programmable integrated photonic circuits fabricated by femtosecond laser micromachining, Il Nuovo Cimento C 45, 209 (2022).
  5. R. Memeo, M. Bertaso, R. Osellame, F. Bragheri, and A. Crespi, Laser-assisted etching of EagleXG glass by irradiation at low pulse-repetition rate, Appl. Sci. 12, 948 (2022).
  6. F. Hoch, S. Piacentini, T. Giordani, Z.-N. Tian, M. Iuliano, C. Esposito, A. Camillini, G. Carvacho, F. Ceccarelli, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, Reconfigurable continuously-coupled 3D photonic circuit for boson sampling experiments, npj Quantum Inf. 8, 55 (2022).
  7. F. Hoch, T. Giordani, N. Spagnolo, A. Crespi, R. Osellame, and F. Sciarrino, Characterization of multimode linear optical networks, Adv. Photon. Nexus 2, 016007 (2023).
  8. R. Sax, A. Boaron, G. Boso, S. Atzeni, A. Crespi, F. Grünenfelder, D. Rusca, A. Al-Saadi, D. Bronzi, S. Kupijai, H. Rhee, R. Osellame, and H. Zbinden, High-speed integrated QKD system, Photon. Res. 11, 1007 (2023).
  9. C. Pentangelo, N. Di Giano, S. Piacentini, R. Arpe, F. Ceccarelli, A. Crespi, and R. Osellame, High-fidelity and polarization-insensitive universal photonic processors fabricated by femtosecond laser writing, Nanophotonics 13, 2259–2270 (2024).
  10. R. Memeo, A. Crespi, and R. Osellame, A micro-opto-mechanical glass interferometer for megahertz modulation of optical signals, Optica 11, 178–183 (2024).

Laboratori scientifici