Inizio
01/04/2021
Fine
31/03/2025
Status
Completato
SINFONIA
Vedi il sito del progettoInizio
01/04/2021
Fine
31/03/2025
Status
Completato
SINFONIA
Vedi il sito del progettoIl progetto SINFONIA, finanziato dall’UE, intende sviluppare una tecnologia che permette l’archiviazione e la trasmissione delle informazioni su nanoscala e a frequenze di funzionamento nella gamma dei terahertz. Si arriverà alla messa a punto della tecnologia tramite la manipolazione di interfacce ibride costituite da molecole organiche e materiali antiferromagnetici. Un gruppo di ricercatori sfrutterà gli stati ibridati realizzati a livello di tali interfacce ibride a bassa dimensione, accoppiando uno stimolo ottico esterno alla propagazione delle perturbazioni magnetiche (onde di spin). A differenza della tecnologia CMOS tradizionale, questo nuovo approccio di tecnologia dell’informazione presenta un consumo energetico straordinariamente basso poiché non richiede correnti elettriche o elettrodi per l’archiviazione e la trasmissione delle informazioni.
Obiettivi
SINFONIA - Selectively activated INFOrmation technology by hybrid Organic Interfaces is an interdisciplinary research project that envisions a technology allowing to store and transport information on the nanometer length scale and at operational frequencies in the THz regime. Such a technology will be realized through an optical manipulation of hybrid molecular/antiferromagnetic interfaces, which will enable a selective activation of information emitters and detectors. Such a selectivity will be ensured by the local nature of the hybridized electronic states that develops at the interface between an antiferromagnet (AF) and a molecular system. The main objective of SINFONIA is to exploit the hybridized states created at such interfaces to couple an external optical stimulus to the propagation of magnetic perturbations (namely spin waves) in the AF layer. This way, SINFONIA proposes a completely new approach to information technology, based on hybrid organic/inorganic low-dimensional systems. Among the breakthroughs offered by such a change of paradigm, there are: low power consumption (no electrical currents), high-frequency responses (ensured by AF materials), tunability (ensured by molecular materials), scalability and miniaturization, on account of the intrinsic low-dimensionality of our interface-based approach. SINFONIA also envisions the long-term perspective of realizing fully organic devices, thurough the development of organic AF films. The proof-of-concept of the proposed technological approach will be sought in the development of magnonics prototypical devices, such as logic gates. Magnonics is widely recognised as one of the most promising technological approaches to go beyond CMOS technology, which represents the state-of-the-art in information and communication technology.